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(1) Introduction on excited-state dynamics



Molecular processes involving electronic excited states
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time = 10.84 fs

triad carotene-porphyrin-fullerene: photo-excitation of the porphyrin and
following electronic dynamics (at fixed nuclear positions)

C. A. Rozzi et al., Nature Comm. 4 (2012) 1602.




Molecular processes involving electronic excited states

time = 40.38 fs

triad carotene-porphyrin-fullerene: photo-excitation of the porphyrin and
following ultrafast electron-nuclear dynamics

C. A. Rozzi et al., Nature Comm. 4 (2012) 1602.




Molecular processes involving electronic excited states

ground-state (adiabatic) vs. excited-state (honadiabatic) dynamics

Iring opening within 35 st

dynamics in the electronic ground state dynamics in the electronic excited states
(before photo-excitation) (after photo-excitation)

S. K. Min, F. Agostini, I. Tavernelli, E. K. U. Gross, J. Phys. Chem. Lett. 8 (2017) 3048. 6




Molecular processes involving electronic excited states
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Molecular processes involving electronic excited states
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B. F. E. Curchod, T. J. Martinez, Chem. Rev. 118 (2018) 3305. R




The time-dependent Schrodinger equation

iho, ¥ (r,R,t) = HU(r, R, )
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(2) The molecular time-dependent
Schrodinger equation



Expansion in the adiabatic basis: Born-Huang expansion

iho, ¥ (r,R,t) = HU(r, R, )

representation of the molecular wavefunction on a basis

\Ij r R t R t (I{i) r=ri,ro,...,In,;
= 2w ep (1) FTR T

parametric dependence on
the nuclear configuration

how is the adiabatic basis defined?
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Expansion in the adiabatic basis: Born-Huang expansion

>

Electronic energy

Hpo(r, R)eR (r) € i) (R)pi (r)

adiabatic (or Born-Oppenheimer) potential energy surfaces (PESs)

k= SO’Sl’SZ’ ""Tl’ T2,
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Expansion in the adiabatic basis: Born-Huang expansion

inserting the Born-Huang expansion into the molecular TDSE
(and projecting on an adiabatic state):

. —h*V7
(R, 1) = |30V Ll ()| (R
£y E:_mdlk (R) - (—ihV,) s Dix..,(R) | xx(R, 1)
k 1 MV ’ QMV | |

with

di,,(R) = < Q (Vusoé? >r; Dk, (R) = <80§l{) ‘Visoif) >r

second-order nonadiabatic

nonadiabatic coupling vector .
coupling

(or derivative coupling)
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Expansion in the adiabatic basis: Born-Huang expansion

>

Electronic energy

small energy gap between
two adiabatic PESs

!

large nonadiabatic couplings
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sum over adiabatic
contributions
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Derivation of the expression of the nonadiabatic couplings

We start from the expression

Or <90R

valid since the adiabatic states are eigenstates of the Hamiltonian Hpo. We
apply the derivative operator to each term on the left-hand side,

(el o), + (5] (Bunotm) s + (st
= djy(R)end (R) + <90%)‘ (3RﬁBo ) ‘90(@> + di(R) e (R)

= —di(R)eyd (R) + <90%)| (5RHBO ) |90(k)> + dik(R)efp (R).

‘¢(k>> —0if [k
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where the relation dj,(R) = —d;x(R) has been used. Isolating the term d;;(R)

one gets
din(R) = .
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The Born-Oppenheimer approximation

| — —Ti2V2 '
(R, t) = |3 2 +epo(R) | (R, 1)

+Z (Z il +(R) - (=ihV,) A 2_ ]\Zy le,u(R)) Xk (R, )

the equations for the coefficients decouple if the nonadiabatic couplings are neglected

. —h2V2 (1)
thoyx (R, t) = Z Fepn(R) | xu(R, 1)

only one term can be considered in the Born-Huang expansion

S k
T(r, R, t) = xs5,(R, o (r) + D xu(R,t)pg (r)
kS
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The Born-Oppenheimer approximation

ih@txl (R, t) —

h2V2

2M,

- o (R) | xi(R, 1)

the equations for the coefficients decouple if the nonadiabatic couplings are neglected

ihatXl(Ra t)

(1)

_h2v2
Z |

~ €BO

X1 (Ra t)

only one term can be considered in the Born-Huang expansion

U(r,R,1)

— X So (R7 t)

S k
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k+So

16




The Born-Oppenheimer approximation

ih@txl (R, t) —

h2V2

2M,

[
-V (R)

ihatXl(Ra t) —

|74

_h2v2

(1)

2M,

- €50

(R)

the equations for the coefficients decouple if the nonadiabatic couplings are neglected

X1 (Ra t)

only one term can be considered in the Born-Huang expansion

U(r,R,t) =

XSO(R t) (50)
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The Born-Oppenheimer approximation

—mV2 .
ih0, ¥ (r,R,t) = | ) Y + Hgo (r,R)| U(r, R, t)

in the BO approximation, the molecular wavefunction is represented as a single product
of an adiabatic electronic state and a time-dependent nuclear wavefunction

S
U(r,R,t) ~ s, (R, t)o'> (r)

this approximation is valid if the nonadiabatic couplings are small, namely if the
energy gap between PESs is large

ci0 (R) — el (R)| > 71 VW k # 0
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The Born-Oppenheimer approximation

ih@t\IJ(r, R, t) —

U(r,R,1)

from the TDSE for the molecular wavefunction to

a new TDSE for the nuclear wavefunction only
because the electronic state is static gol({SO)(r).

ihatXSO (Ra t) —

X So (Rv t)
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The Born-Oppenheimer approximation

S. Shin, H. Metiu, J. Chem. Phys. 102 (1995) 9285. 19




The Born-Oppenheimer approximation

multiple PESs

-0.15

electronic energy (hartree)
o
N

-0.25

| | |

|
6 -4 -2 0 2 4 6

nuclear position (bohr)

20




The Born-Oppenheimer approximation

electronic energy (hartree)
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The Born-Oppenheimer approximation

electronic energy (hartree)
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The Born-Oppenheimer approximation

electronic energy (hartree)
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The classical limit in the Born-Oppenheimer approximation

electronic energy (hartree)
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evolution of classical trajectories on
a single PES

MR, (1) = —V,ei50 (R)
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The classical limit in the Born-Oppenheimer approximation

electronic energy (hartree)
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sinle PESs (BO approximation)
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The classical limit in the Born-Oppenheimer approximation

sinle PESs (BO approximation)

) |
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Beyond the Born-Oppenheimer approximation

S. Shin, H. Metiu, J. Chem. Phys. 102 (1995) 9285. 23




Beyond the Born-Oppenheimer approximation

-0.15

-0.2 |-

electronic energy (hartree)

-0.25 |- _

nuclear position (bohr)

24




Beyond the Born-Oppenheimer approximation
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The trajectory-based (quantum-classical) approach

quantum-classical methods

seperation of the problem into two sets of degrees of freedom, electrons and nuclei

time-dependent Schroédinger
equation

separation of the problem
& electrons + nuclel w

guantum-mechanical treatment classical approximation of
of the electrons the nuclei
I 5 coupling between E I
electronic and nuclear
motion

approximate classical treatment of nuclear dynamics
26




(3) Trajectory-based approaches to
excited-state molecular dynamics



Sampling of the initial conditions

electronic energy (hartree)
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Sampling of the initial conditions

MODEL
SYSTEM

quantum mechanical nuclear distribution

density
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Sampling of the initial conditions

MODEL
SYSTEM

quantum mechanical nuclear distribution

density

classical nuclear distribution
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Sampling of the initial conditions

MODEL
SYSTEM

quantum mechanical nuclear distribution

density
10 trajs —e—

distribution of 10 trajectories
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Sampling of the initial conditions

MODEL
SYSTEM

quantum mechanical nuclear distribution

density
500 trajs —e—

distribution of 500 trajectories
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Sampling of the initial conditions

MODEL
SYSTEM

quantum mechanical nuclear distribution

density
2000 trajs —eo—

distribution of 2000 trajectories
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Sampling of the initial conditions

MODEL
SYSTEM

quantum mechanical nuclear distribution

density
5000 trajs —e—

distribution of 5000 trajectories
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Sampling of the initial conditions

MODEL
SYSTEM

quantum mechanical nuclear distribution

density
10000 trajs —e—

distribution of 10000 trajectories
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Sampling of the initial conditions

REAL
SYSTEM

sampling of initial conditions
&
evolution of N copies of the same system
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Sampling of the initial conditions

Wigner distribution

N (27T1h)f /dz <R+g

in the case (and only in the case) of a Gaussian-shaped
(initial) nuclear wavefunction

Y (R,t=0) = <i> 7 exp [— (R — RO)2] exp FPO(R - RO)}

=

-

X
|

5

R—2)e #P% p=u) (1)

o2 202 h
Wigner transform 1D example
1 (R— R())2 OQ(P— P())2
R, Pt=0)= —exp|— exp | —
xw ) Th o { o2 P h?
Gaussian sampling Gaussian sampling

around Ro with variance o around Po with variance h/o
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Derivation of the Wigner function for a Gaussian

Starting from the expression of the nuclear wavefunction at time ¢ = 0

(R, = 0) = (%) e [— i RO)Q] exp FPO(R . Ro)]

TOo 202 h

we insert it into the definition of the Wigner function

< < i
R, Pt=0)= dv(iR+Z.t=0v(R—Z2.t=0)e %
XW( y 4 ) (27Th)/ ZX( _|_27 )X( 9’ )6
— 1 Le— (R—;;O)2 /dz e_é_%(P—PQ)Z.
(27h) V mo2
Completing the square in the exponent of the integrand function, i.e., —% —
L(P — Py)z — “ESI

1 (R—R0)2 0'2(P—P0)2
Xw(R, Pt = O) = % exp [— — ] exp [— > ,



Sampling of the initial conditions

The Wigner distribution...

* |s a one-to-one transformation from a quantum-mechanical distribution
in configuration space to a quantum-mechanical distribution in phase
space

* possibility to account for quantum effects, e.q., zero-point energy, in the
distribution of initial conditions

* is a Gaussian distribution in phase space only for a Gaussian distribution
In configuration space
* sampling easy to implement: Box-Muller transform to generate
independent normally-distributed numbers (i.e., initial conditions) starting
from uniformly-distributed random numbers, normal modes to determine
the width of the distribution.

* presents negative regions in general cases, thus non-standard sampling
techniques are required

* |s normally used in the harmonic approximation

M. Barbatti and K. Sen, Int. J. Quant. Chem. 116 (2016) 762. 38




Sampling of the initial conditions

The classical Boltzmann distribution...

H(R.P)]
p(R.P) o exp | ;B’T >_
P2
H(R,P) = onf V(R) — with V(R)

= €30

e can be sampled via ab initio molecular dynamics in the electronic

ground state in the NVT ensemble

e can be sampled via Monte Carlo methods

e does not account for guantum effects

e can account for anharmonicity in the potential energy surface

M. Barbatti and K. Sen, Int. J. Quant. Chem. 116 (2016) 762.

(R)
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The concept of classical force in nonadiabatic dynamics

electronic energy (hartree)

-0.15

-0.2

-0.25

O QOCC
P -
. wh_at IS the
g classical force?
N

nuclear position (bohr)

40




Trajectory surface hopping

electronic energy (hartree)
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Trajectory surface hopping
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J. C. Tully, J. Chem. Phys. 93 (1990) 1061.
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Trajectory surface hopping
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evolution on adiabatic
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Trajectory surface hopping

The ideas behind the trajectory surface hopping algorithm...

* the nuclei evolve along classical trajectories, therefore an implicit time
dependence (via the trajectory) appears in the electronic Schrodinger
equation

e we suppose that the electronic equation is “given” (see next slide), and
the coupling to the nuclei is simply expressed via the dependence of the
electronic Hamiltonian on the trajectory

e a nonadiabatic event, i.e., what happens at an avoided crossing or
conical intersection, is represented as a trajectory jump

e the “jump"” is a stochastic event that takes place according to some
probability (we will see in the following the fewest-switches procedure)

J. C. Tully, J. Chem. Phys. 93 (1990) 1061.
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Trajectory surface hopping

TSH algorithm: the nuclear evolution equations

Pcl,l/(t)
M,

P (t) = B3 (1) = —Voeho (Ralt)

Rcl,y(t) —

at every time step the state * has to be selected: for instance, if the trajectory at time t is
evolving on the surface k, the probability to jump to a state | is evaluated from

—2dtR| C’*
Pr—i(t,t + dt) = max |0, Cn () Z Ry (t) - i, (Rai(t))

- velocity rescaling: the discontinuity in the potential energy after a jump has occurred has to be
“balanced" by a discontinuity in the kinetic energy to impose energy conservation along a trajectory

- frustrated hop: if a trajectory does not have enough kinetic energy for a jump towards a potential
surface that is higher in energy, the hop does not occur

J. C. Tully, J. Chem. Phys. 93 (1990) 1061.
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Trajectory surface hopping

TSH algorithm: the electronic evolution equation

1) introduce the electronic : 2
(Sghrédinger equation as ihoy® (r, R (t), ) = Hpo (r, Ra(t)) &(r, Ra(t), 1)

(2) Born-Huang-like
) O(r,Ra(t).t) = > Cr(t)py ()

expansion of the electronic
wavefunction k

(3) eigenvalues of the

() + V(e Ra()| ol ) (1) = €5 (Ra (1)) 8y, ) (x)
electronic Hamiltonian cl cl

1
>

(4) equations for the oy — L0 (RN ) — SR dor (R (1 t
expansion coefficients k() hGBO( d()) k() ; Cl() kl( Cl())cl()

J. C. Tully, J. Chem. Phys. 93 (1990) 1061. 45




Derivation of the expression of the electronic evolution equation

Given the expression of the electronic wavefunction in the adiabatic basis ®(r, Ry (t),t) =

> C’k(t)gb(ch)l ( t)(r), the electronic time-dependent Schrodinger equation is

zh@t Z Ck g)l(t) ) = (Te(’r) T RCl ) Z Ck (Fls)l(t) )

The action of the time derivative on the left-hand side gives

i S ()R, (r) = zhzck BeW (1) +2h20k 1 (00RO, (4 (r)
k

where the chain rule 8; = R (t)0r has been used in the second term on the
right-hand Slde When projecting the electronic time-dependent Schrodinger

equation on gbR z(t)( r), one gets

OrdY) (1)) = Cil)elsp (Ra(®)),

Cit) = _%eggm - chk (t)dyss (Rer (1))



Trajectory surface hopping

What do we need from electronic-structure theory?

F,>"(t) = —Vuepo ( Ru(t))

—2dt R| C*
Pri(t,t + dt) = max |0, Chlt Z R, (t) - dik,y (Ra(t))

Clt) = —7 e (Ra(1) Clt) = 3 Rt (0) 3 iy (Raa(1)) Cu(t)
1% [

ENERGIES, GRADIENTS, NONADIABATIC COUPLINGS
at the instantaneous (classical) nuclear positions

on-the-fly dynamics
we do not need to know electronic properties everywhere in nuclear configuration space




Trajectory surface hopping

® PROS

* intuitive, easy implementation, widely used (therefore already implemented in
many codes)

* independent trajectories, thus easy to parallelize

e suitable for on-the-fly dynamics

e good for big systems (tens of atoms, depending on the electronic structure
method)

e possibility to combine it with QM/MM (available in some codes)

* widely used to treat spin-orbit coupling

® CONS
e ad hoc method (approximations not well controlled)
e wrong description of quantum decoherence, but easy ad hoc cures
* not a unique way of treating spin-orbit coupling

48




An example: Photo-dynamics of thiophene with TSH
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An example: Photo-dynamics of thiophene with TSH

Thiophene: geometry optimized
with Gaussian09 at the DFT level
(wB97X-D) with basis set 6-31G™.

Frequencies (cm-1)
460
583
623
697
736
769
862
898
902
943
1069
1118
1129
1299
1430
1496
1609
3247
3262
3295
3298

we are in the
minimum of the
potential because
all frequencies are
positive (real)
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An example: Photo-dynamics of thiophene with TSH

cross section (Angstromz)
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0.3
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total
Sy to S,
Spoto S,
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5.5

energy (eV)

7.5
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An example: Photo-dynamics of thiophene with TSH

HOMO

E=6.1eV
f=0.09

So to S+

LUMO

HOMO-1

E=6.2eV
f=0.10

Soto S>

LUMO

- 52




An example: Photo-dynamics of thiophene with TSH

populations

0.8

0.6

04 -

0.2

| | | | |
10 20 30 40 50 60
time (fs)

70

80
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An example: Photo-dynamics of thiophene with TSH

'5526 | | | | | | | |
_552 65 /\/\J\/\/\/\/\_\/\
-552.7 |
)
o
@
< 55275 |
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(O]
[
()
-552.8 |- S, .
S| ——
Sy
S3
force state o
-552.85 |-
_5529 | | | | | | | |
0 5 10 15 20 25 30 35 40 45

time (fs)
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An example: Photo-dynamics of thiophene with TSH

energy (hartree)
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Available codes & References

 CPMD
* TSH based on linear-response TDDFT
e http://www.cpmd.org

 NEWTON-X
* interface for TSH dynamics with different electronic-structure packages
e http://www.newtonx.org

* SHARC
* interface for TSH dynamics with different electronic-structure packages
e https://sharc-md.org

BOOKS AND BOOK CHAPTERS

e Domcke, W., Yarkony, D., & Képpel, H. (Eds.). (2004). Conical intersections: Electronic structure, dynamics &
spectroscopy (Vol. 15). World Scientific Pub Co Inc.

e Baer, M. (2006). Beyond Born-Oppenheimer: Electronic Nonadiabatic Coupling Terms and Conical
Intersections. John Wiley & Sons, Inc.

e Gatti, F.,, Lasorne, B., Meyer, H.-D., & Nauts, A. (2017). Applications of quantum dynamics in chemistry (Vol.
98). Springer.

e Agostini, F., Curchod, B. F. E., Vuilleumier, R., Tavernelli, |., & Gross, E. K. U. (2018). TDDFT and quantum-
classical dynamics: A universal tool describing the dynamics of matter. In W. Andreoni & S. Yip (Eds.),
Handbook of materials modeling (p. 1-47) Springer Netherlands.

REVIEWS AND OVERVIEWS

TSH: Barbatti, M. (2011). WIREs Comput. Mol. Sci., 1, 620-633; Persico, M., & Granucci, G. (2014). Theor.

Chem. Acc., 133, 1-28.

TRAJECTORY-BASED METHODS: Crespo-Otero, R., & Barbatti, M. (2018). Chem. Rev., 118, 7026-7068.

EXCITED-STATE DYNAMICS: Agostini, F., & Curchod, B. F. E (2019). WIREs Comput. Mol. Sci., 9, e1417.
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http://www.cpmd.org
http://www.newtonx.org
https://sharc-md.org

Other methods for excited-state, nonadiabatic dynamics

Methods to solve the time-dependent Schrodinger equation

Quantum dynamics (not really an approximation method)

* representation of the molecular wavefunction or of the BO wavefunctions on a time-
Independent grid

* representation of the BO wavefunctions on a time-independent basis set

* representation of the BO wavefunctions on a time-dependent basis set

Semiclassical dynamics
* path-integral representation of the quantum-mechanical propagator
* |nitial-value representation for phase-space representation

Quantum dynamics with trajectories

* trajectory surface hopping (Persico, Granucci, Barbatti, Subotnik, Gonzalez, Tavernelli)
* Ehrenfest and multi-configuration Ehrenfest dynamics (Robb, de la Lande, Shalashilin)
* full and ab initio multiple spawning (Martinez, Curchod)

* ab initio multiple cloning (Shalashilin, Tretiak)

* direct dynamics vMCG (Lasorne, Worth)

* exact factorization and CT-MQC (Gross, Agostini, Min)

* (Bohmian) quantum trajectories (Tavernelli, Albareda)
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@) WIREs

COMPUTATIONAL MOLECULAR SCIENCE
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OVERVIEW

Different flavors of nonadiabatic
molecular dynamics

Federica Agostini & Basile F. E. Curchod
WIREs Computational Molecular
Science

Vol. 9 (2019) e1443.




